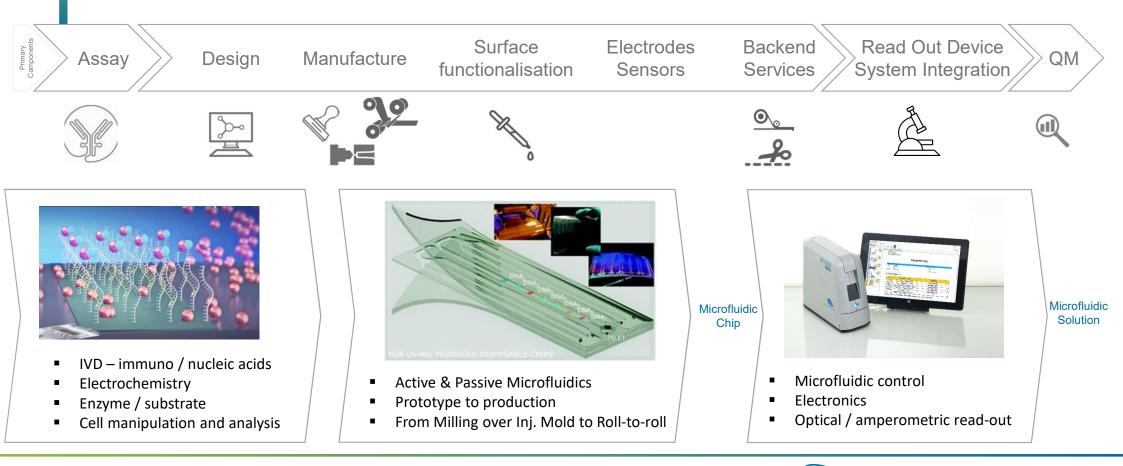
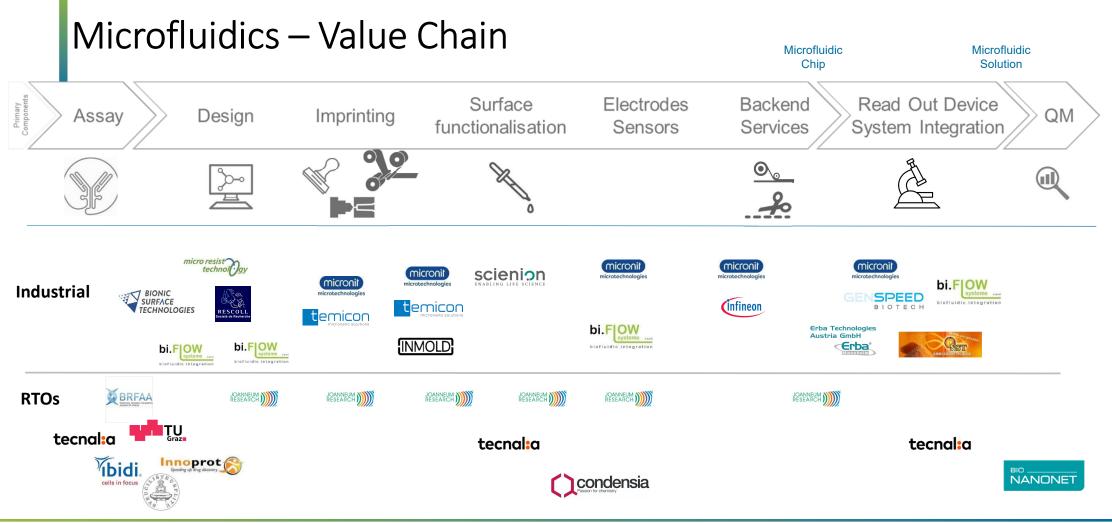

Microfluidics InnovationHub

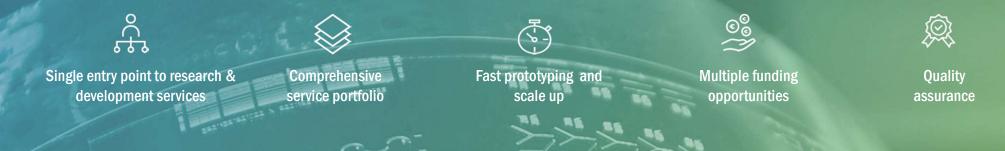
We get Microfluidics rolling

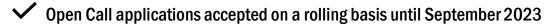

NextGenMicrofluidics (NGM)

- NGM is an Open Innovation Test Bed 21 companies
- MIH acts as a single-entry point towards their combined technologies and expertise
- worldwide biggest platform for upscaling and testing of microfluidic devices



MIH Service Portfolio





WE DEVELOP AND PRODUCE Microfluidic Lab-on-a-Foil Systems

We offer funding to scale up your application

- ✓ Access to all services of the EU Horizon Europe project NextGenMicrofluidics
- ✓ Funding rate of up to 92% for European SMEs and 50% for Large Enterprises

Microfluidice

Microfluidics Innovation Hub is the single entry point of the European project NextGenMicrofluidcs (www.nextgenmicrofluidics.eu). NextGenMicrofluidics has received funding from the European Union's HORIZON 2020 research & innovation programme under grant agreement no. 862092.

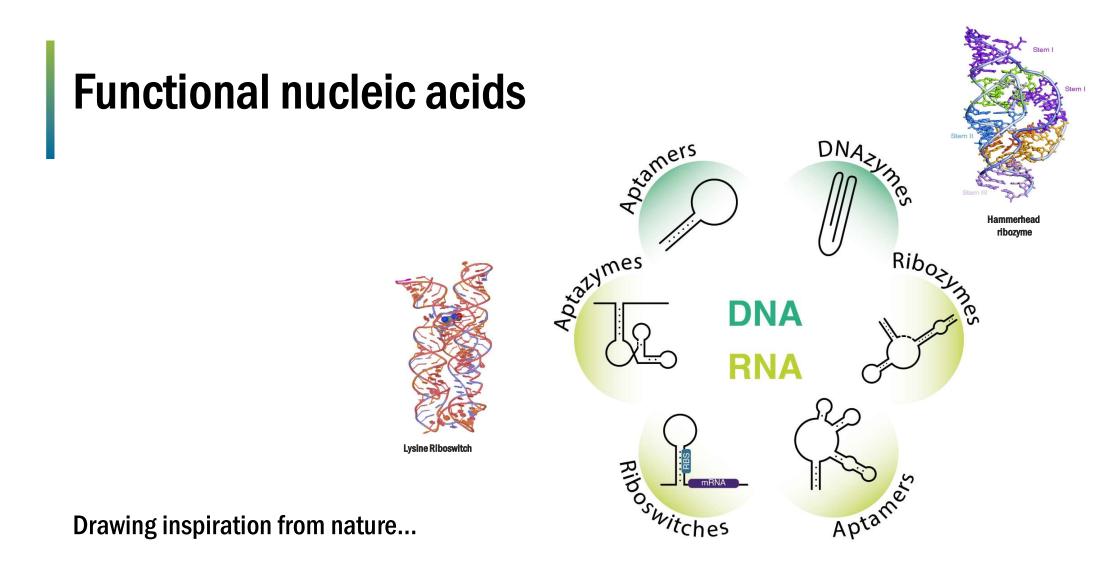
Functional nucleic acids: unleashing their untapped potential in a diverse set of applications

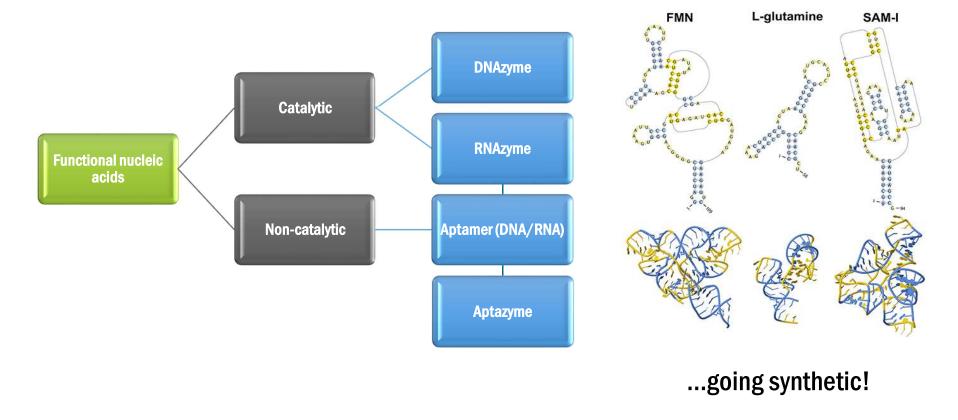
7 FEB 2023, 15:00 CET

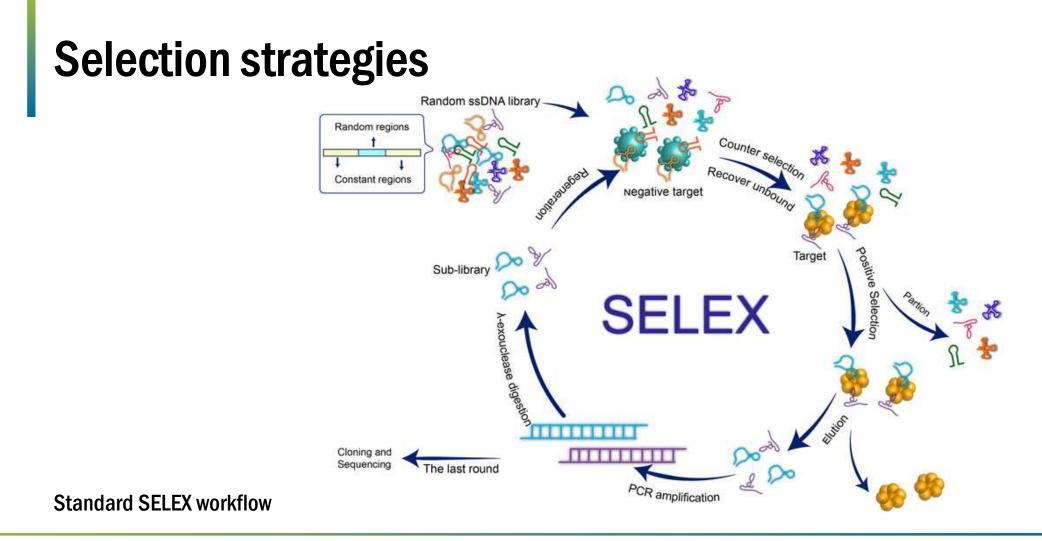
Presented by George Tsekenis, PhD Head of the Applied Biophysics and Surface Science Group, BRFAA

www.microfluidicshub.eu

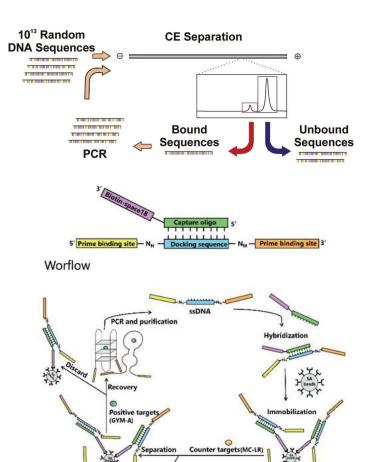
Content


- Functional nucleic acids
 - Categories and selection strategies
 - Advantages over antibodies
 - Current challenges and ways forward
- Applications of functional nucleic acids
- Applied Biophysics and Surface Science (ABISS) Group


Functional nucleic acids Categories and selection strategies



Functional nucleic acids



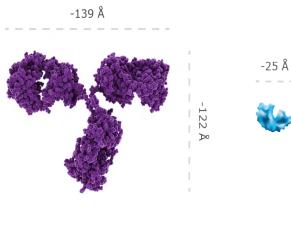
Selection strategies

Some of the countless SELEX variants

SELEX variant	Description				
Magnetic bead-based SELEX	Accelerate SELEX process by immobilizing targets on magnetic beads				
Capillary electrophoresis SELEX	Neither the ligand nor the oligo library are immobilized				
Cell-SELEX	Whole cells employed as targets				
Capture-SELEX	Immobilize oligonucleotide library, while the ligand is in solution				
Next generation sequencing SELEX	Sequencing across all the selection rounds rather than just the last one				

Discard

 (\circ)

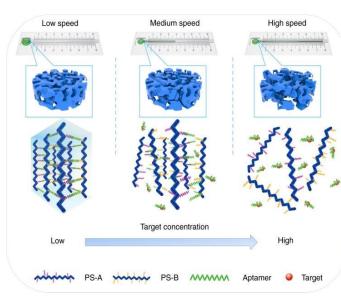


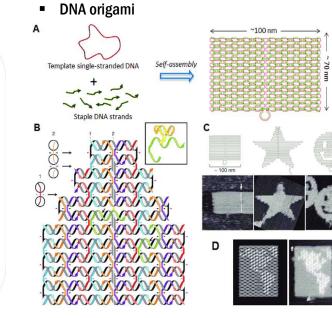
Functional nucleic acids Advantages over antibodies


Advantages

	Antibodies	Aptamers	
Affinity for ligand	High	High	
Selectivity for ligand	High	High (?)	
Range of target analytes	Limited	Wide	
Cost	Expensive	Cheap	
Stability	Low	High	
Modification	Not controlled	Easy and highly controlled	

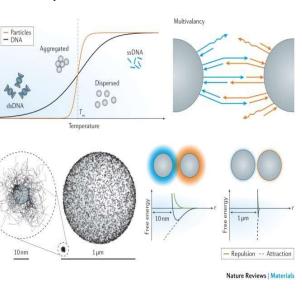
14

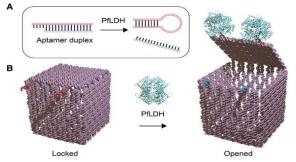

Are aptamers on a par to antibodies?


Advantages (I)

Base complementarity allows self-organized networks to be formed

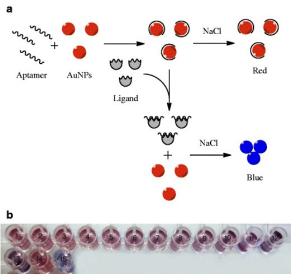
Target-responsive hydrogels


Nat Commun. 2019 Mar 8;10(1):1036. doi: 10.1038/s41467-019-08952-1

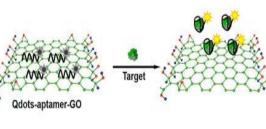


Nat Rev Methods Primers 1, 13 (2021). https://doi.org/10.1038/s43586-020-00009-8

Nat Rev Mater 1, 16008 (2016). https://doi.org/10.1038/natrevmats.2016.8

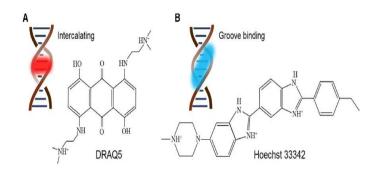

Nanomedicine: Nanotechnology, Biology and Medicine, 14, 2018,1161-1168, https://doi.org/10.1016/j.nano.2018.01.018.

Microparticles

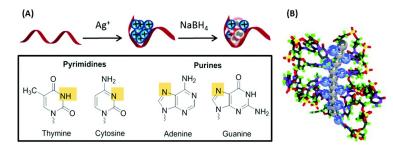

Advantages (II)

Interactions with 2D and 3D nanomaterials, organic molecules

Unique interactions endowed by the vary nature of nucleic acids

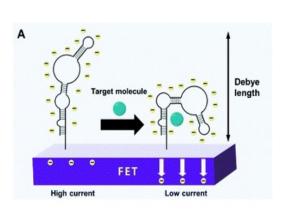


Microchim Acta 183, 1687-1697 (2016). https://doi.org/10.1007/s00604-016-1798-3



Biosensors and Bioelectronics, 85, 2016, 649-656, https://doi.org/10.1016/j.bios.2016.05.072.

Biochemical Society Transactions (2018) https://doi.org/10.1042/BST20170301

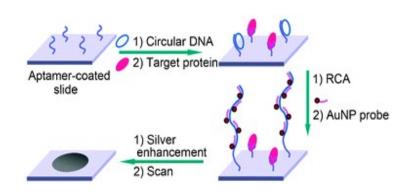


https://doi.org/10.1039/C6NR05872H

Advantages (III)

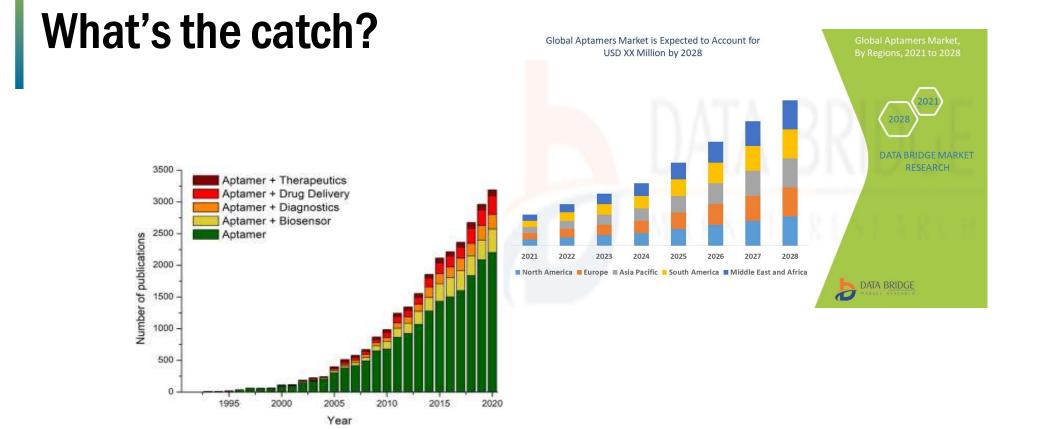
Signal generation or amplification made simple

10.1039/D0MA00639D (Review Article) Mater. Adv., 2020, 1, 2663-2687


Aptamer

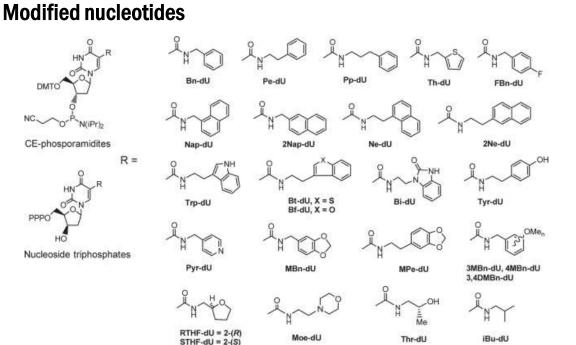
Polysulfone

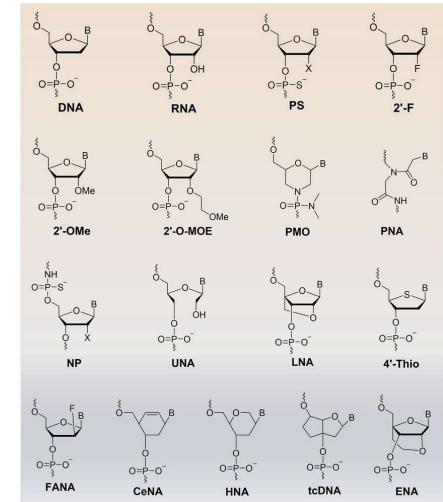
membrane


Reference electrode (coated silver wire

Sensor (insulated gold wire)

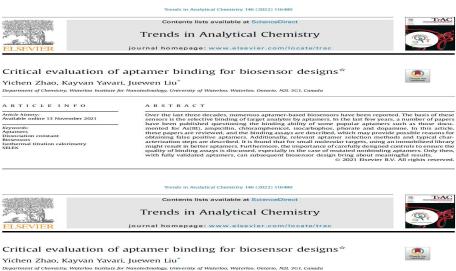
Chem. Commun., 2010, 46, 6720-6722 https://doi.org/10.1039/C002078H





Functional nucleic acids Current challenges and ways forward

Limited possibilities in a 4 letter language



Issues with SELEX

SELEX: choosing a library design					
Chemical nature	DNA	$\mathbf{\nabla}$	RNA		
Modification	Natural		Modified	(V	
Modification site	Backbone	$\mathbf{\nabla}$	Base		
Primer binding sites	Present	$\mathbf{\nabla}$	Primer-free		
Source Che	emical synthesis	$\mathbf{\nabla}$	Genome		
Random region	Continuous		Segmented	(7	
Randomization	Uniform	$\mathbf{\nabla}$	Doped		
Secondary structure	No constraint		Pre-structured	Ì	

Validation of selected sequences

ABSTRACT

ARTICLE INFO

Article history: Available online 13 November 2021

s al titration calorin

Over the last three decades, numerous aptamer-based biosensors have been reported. The basis of these sensors is the selective binding of target analytes by aptamers. In the last few years, a number of papers have been published questioning the binding ability of some popular aptamers publish as those decubers are reviewed, and the binding ability of some popular aptamers such as those decubers are reviewed, and the binding abary are described, which may provide possible reasons for obtaining fails positive aptamers, Additionally, relevant aptamer selection methods and typical charming the sulfit in batter aptamers. Additionally, relevant aptamer selection methods and typical charming threshold in a subsect of the sepacities of the sepacities of the second of the second second to the second secon

JACS

Do Aptamers Always Bind? The Need for a Multifaceted Analytical Approach When Demonstrating Binding Affinity between Aptamer and Low Molecular Weight Compounds

Fabio Bottari, ▼ Elise Daems, ▼ Anne-Mare de Vries, ▼ Pieter Van Wielendaele, Stanislav Trashin, Ronny Blust, Frank Sobott, Annemieke Madder, José C. Martins,* and Karolien De Wael*

ABSTRACT: In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a β -lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and ¹H-nuclear magnetic resonance spectroscopy (¹H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and ¹H NMR we could verify that none of the ampicillin aptamers

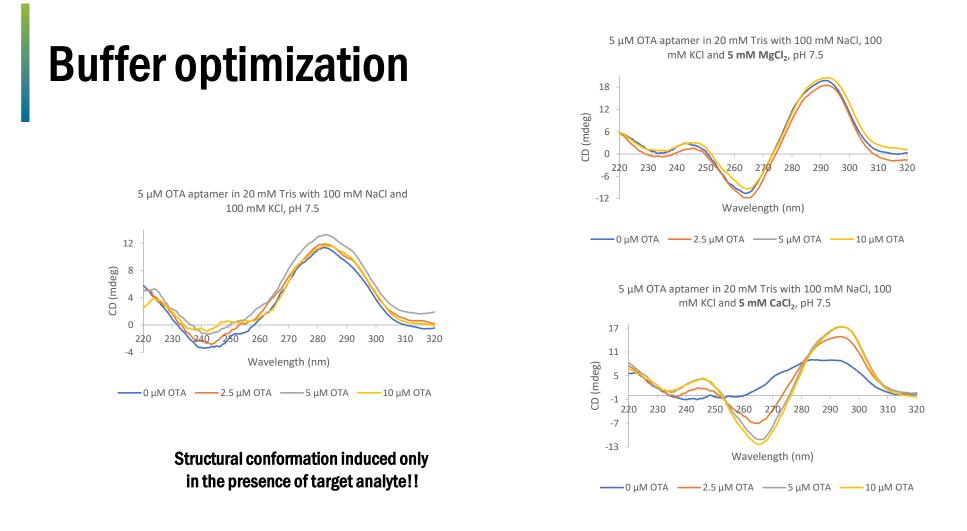
Article

show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and ¹H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and 1argininamide (IOLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.

■ INTRODUCTION

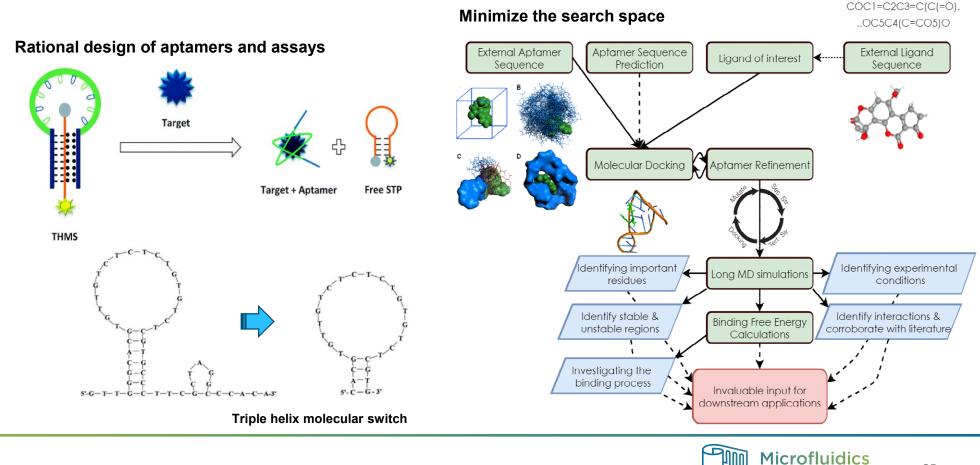
Aptamers are short single strands of DNA or RNA that recognize with high affinity a given target against which they are selected. Aptamers were first obtained in the 1990s1 following a procedure called SELEX (systematic evolution of ligands by exponential enrichment). From the beginning, they were considered a leap forward in many analytical and biomedical applications. Indeed, aptamers offer considerable advantages over traditional molecular biorecognition elements such as antibodies or enzymes, including stability over a wider

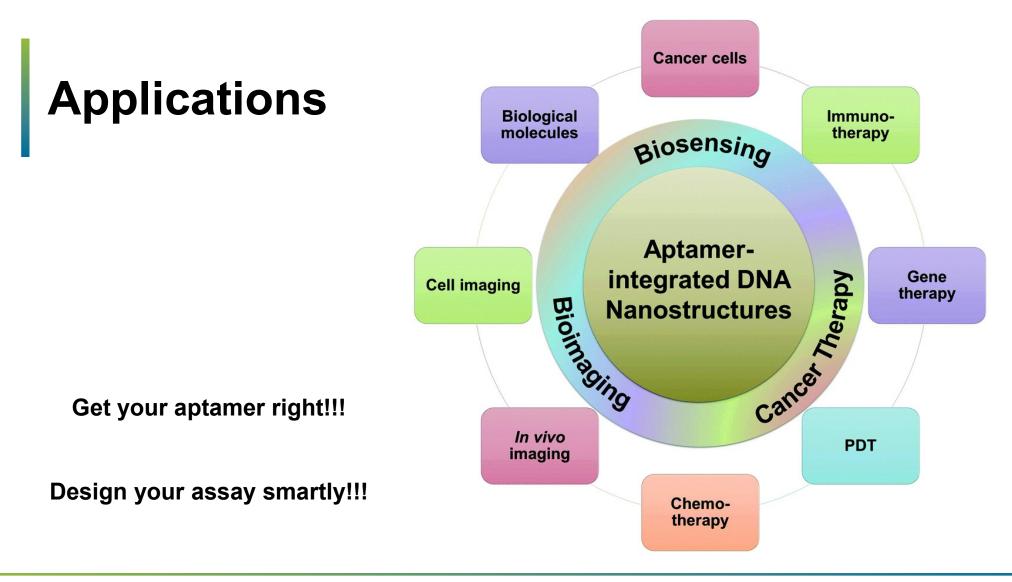
remain to be faced before this can be achieved. A variety of factors have been put forward to explain why aptamers have not yet penetrated the market:16 one of the main reasons can be identified as the so-called "thrombin problem". Indeed, rather than developing assays for more clinically relevant targets, hundreds of investigators continue to focus their attention on perfecting thrombin-binding aptamers or designing clever detection strategies for this target. The same can be said to a lesser extent for cocaine-binding aptamers in the field



Validation of selected sequences

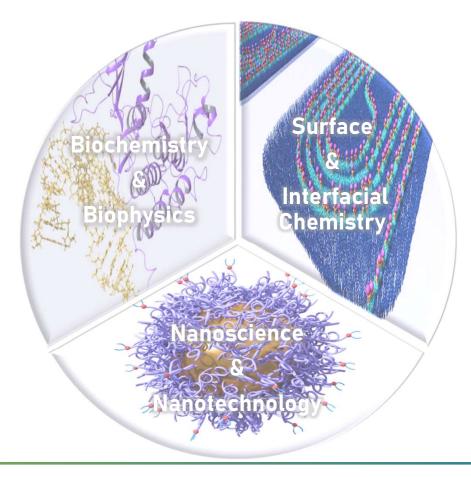
						1. Candidate screening	2. Truncation & optimization	3. Characterization	4. Functional validation
	Costs	Speed	Amount of sample	User-friendliness	Method milestones	Reduce the number of putative aptamer sequences from SELEX from hundreds to ~3 candidates	Determine minimal binding sequence	Determine the K _D , selectivity and other parameters	Assess the robustness of the aptamer for use in different application platforms
ITC	€€€	チチ	4444		-				
Native (IM-)MS	€€€€€	チデチデチ	44		Important	1. High-throughput 2. Cost-effective	1. High-throughput 2. Cost-effective	1. Quantitative 2. Precise	 Validate function with at least two separate methods
Electrochemical techniques	€	チオチオチ	۵		assay considerations		3. Provides insight about structure or important binding residues	3. Measurement of multiple parameters in parallel	 Determine functionality in solution and immobilized Does not need to be quantitative
Fluorescent-based techniques	€€	オオオ	44	2					
MST	€€€	チチチチ	۵			1. Fluorescence	1. DNase Assay	1. SPR	Choose at least 1 assay from group not used
SPR	€€€€	オオオ	۵		Assay options (ascending order)	Polarization (FP) 2. SYBR Green (SG) 3. AuNP Assay 4. Affinity Chrom. (beads) 5. SPR	2. FP 3. SG 4. Affinity Chrom. (beads) 5. SPR	2. FP 3. Equil. dialysis 4. SG 5. Affinity Chrom. (beads)	in step 3 In solution
SERS	€€€	オオオオオ	444						FP, Equil. Dialysis, SG, Affinity Chrom. (either), Ultrafiltration, DNase
QCM	€€€€	オオオオ	66						DNA immobilized/constrained SPR. AuNPs
NMR spectroscopy	€€€€€	オオオ	44444		8				and "opposited on a
X-ray crystallography	€€€€€	3	4444						DOI: 10.1021 /acc. analaham 5602102
CD	€€	チオチオキ	4444	1					DOI: 10.1021/acs.analchem.5b02102 Anal. Chem. 2015, 87, 8608-8612
SAXS	••••	デデ	4444						


Trends in Analytical Chemistry 142 (2021) 116311 https://doi.org/10.1016/j.trac.2021.116311


Post-SELEX sequence optimization

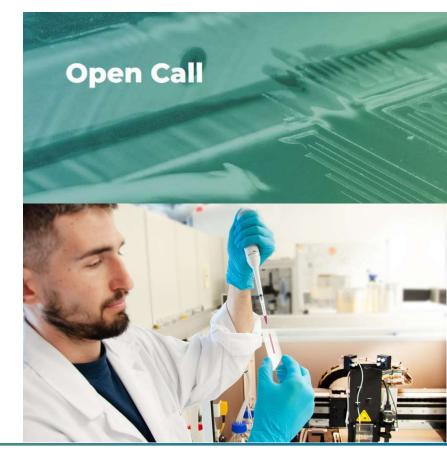
Functional nucleic acids Applications of functional nucleic acids

Applied Biophysics and Surface Science (ABISS) Group



Biomedical Research Foundation Academy of Athens

Applied Biophysics and Surface Science (ABISS) Group



THANK YOU

Accelerate your Microfluidic Innovation

- Addresses companies SMEs and LEs
- Access to all services of the NGM OITB min 2 partners involved
- Budget up to EUR 200.000
- Duration: 6 to 12 months
- Funding rate of up to 92% and 50% for European SMEs and Large Enterprises respectively
- Technology Readiness Level > 4 or Microfluidic System available
- Managed & coordinated by the MIH
- Details see: www.nextgenmicrofluidics.eu/open-call/

WE DEVELOP AND PRODUCE CUSTOMIZED Microfluidic Lab-on-a-Foil Systems

Single entry point to research & development services

Comprehensive service portfolio

Fast prototyping and scale up

Multiple funding opportunities

©©

Quality assurance

Find out more at https://www.microfluidicshub.eu

Microfluidics Innovation Hub is the single entry point of the European project NextGenMicrofluidics (www.nextgenmicrofluidics.eu). NextGenMicrofluidics has received funding from the European Union's HORIZON 2020 research & innovation programme under grant agreement no. 862092.